Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new way to evaluate G-Wishart normalising constants via Fourier analysis (2404.06803v2)

Published 10 Apr 2024 in stat.ME, math.ST, and stat.TH

Abstract: The G-Wishart distribution is an essential component for the Bayesian analysis of Gaussian graphical models as the conjugate prior for the precision matrix. Evaluating the marginal likelihood of such models usually requires computing high-dimensional integrals to determine the G-Wishart normalising constant. Closed-form results are known for decomposable or chordal graphs, while an explicit representation as a formal series expansion has been derived recently for general graphs. The nested infinite sums, however, do not lend themselves to computation, remaining of limited practical value. Borrowing techniques from random matrix theory and Fourier analysis, we provide novel exact results well suited to the numerical evaluation of the normalising constant for classes of graphs beyond chordal graphs.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com