Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Families of Planar DAGs with Constant Stack Number

Published 28 Jul 2021 in math.CO, cs.DM, and cs.DS | (2107.13658v2)

Abstract: A $k$-stack layout (or $k$-page book embedding) of a graph consists of a total order of the vertices, and a partition of the edges into $k$ sets of non-crossing edges with respect to the vertex order. The stack number of a graph is the minimum $k$ such that it admits a $k$-stack layout. In this paper we study a long-standing problem regarding the stack number of planar directed acyclic graphs (DAGs), for which the vertex order has to respect the orientation of the edges. We investigate upper and lower bounds on the stack number of several families of planar graphs: We improve the constant upper bounds on the stack number of single-source and monotone outerplanar DAGs and of outerpath DAGs, and improve the constant upper bound for upward planar 3-trees. Further, we provide computer-aided lower bounds for upward (outer-) planar DAGs.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.