Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Sublinear Bound on the Page Number of Upward Planar Graphs (2107.05227v4)

Published 12 Jul 2021 in math.CO and cs.DM

Abstract: The page number of a directed acyclic graph $G$ is the minimum $k$ for which there is a topological ordering of $G$ and a $k$-coloring of the edges such that no two edges of the same color cross, i.e., have alternating endpoints along the topological ordering. We address the long-standing open problem asking for the largest page number among all upward planar graphs. We improve the best known lower bound to $5$ and present the first asymptotic improvement over the trivial $O(n)$ upper bound, where $n$ denotes the number of vertices in $G$. Specifically, we first prove that the page number of every upward planar graph is bounded in terms of its width, as well as its height. We then combine both approaches to show that every $n$-vertex upward planar graph has page number $O(n{2/3} \log(n){2/3})$.

Citations (7)

Summary

We haven't generated a summary for this paper yet.