Papers
Topics
Authors
Recent
2000 character limit reached

DoReMi: First glance at a universal OMR dataset

Published 16 Jul 2021 in cs.IR, cs.CV, and cs.MM | (2107.07786v1)

Abstract: The main challenges of Optical Music Recognition (OMR) come from the nature of written music, its complexity and the difficulty of finding an appropriate data representation. This paper provides a first look at DoReMi, an OMR dataset that addresses these challenges, and a baseline object detection model to assess its utility. Researchers often approach OMR following a set of small stages, given that existing data often do not satisfy broader research. We examine the possibility of changing this tendency by presenting more metadata. Our approach complements existing research; hence DoReMi allows harmonisation with two existing datasets, DeepScores and MUSCIMA++. DoReMi was generated using a music notation software and includes over 6400 printed sheet music images with accompanying metadata useful in OMR research. Our dataset provides OMR metadata, MIDI, MEI, MusicXML and PNG files, each aiding a different stage of OMR. We obtain 64% mean average precision (mAP) in object detection using half of the data. Further work includes re-iterating through the creation process to satisfy custom OMR models. While we do not assume to have solved the main challenges in OMR, this dataset opens a new course of discussions that would ultimately aid that goal.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.