Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

In Search of a Dataset for Handwritten Optical Music Recognition: Introducing MUSCIMA++ (1703.04824v1)

Published 14 Mar 2017 in cs.CV

Abstract: Optical Music Recognition (OMR) has long been without an adequate dataset and ground truth for evaluating OMR systems, which has been a major problem for establishing a state of the art in the field. Furthermore, machine learning methods require training data. We analyze how the OMR processing pipeline can be expressed in terms of gradually more complex ground truth, and based on this analysis, we design the MUSCIMA++ dataset of handwritten music notation that addresses musical symbol recognition and notation reconstruction. The MUSCIMA++ dataset version 0.9 consists of 140 pages of handwritten music, with 91255 manually annotated notation symbols and 82261 explicitly marked relationships between symbol pairs. The dataset allows training and evaluating models for symbol classification, symbol localization, and notation graph assembly, both in isolation and jointly. Open-source tools are provided for manipulating the dataset, visualizing the data and further annotation, and the dataset itself is made available under an open license.

Citations (15)

Summary

We haven't generated a summary for this paper yet.