Papers
Topics
Authors
Recent
2000 character limit reached

Smart Gradient -- An Adaptive Technique for Improving Gradient Estimation

Published 14 Jun 2021 in math.NA and cs.NA | (2106.07313v1)

Abstract: Computing the gradient of a function provides fundamental information about its behavior. This information is essential for several applications and algorithms across various fields. One common application that require gradients are optimization techniques such as stochastic gradient descent, Newton's method and trust region methods. However, these methods usually requires a numerical computation of the gradient at every iteration of the method which is prone to numerical errors. We propose a simple limited-memory technique for improving the accuracy of a numerically computed gradient in this gradient-based optimization framework by exploiting (1) a coordinate transformation of the gradient and (2) the history of previously taken descent directions. The method is verified empirically by extensive experimentation on both test functions and on real data applications. The proposed method is implemented in the R package smartGrad and in C++.

Citations (14)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.