Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Stochastic Steepest Descent Method for Robust Optimization in Banach Spaces (2308.06116v1)

Published 11 Aug 2023 in math.NA, cs.NA, and math.OC

Abstract: Stochastic gradient methods have been a popular and powerful choice of optimization methods, aimed at minimizing functions. Their advantage lies in the fact that that one approximates the gradient as opposed to using the full Jacobian matrix. One research direction, related to this, has been on the application to infinite-dimensional problems, where one may naturally have a Hilbert space framework. However, there has been limited work done on considering this in a more general setup, such as where the natural framework is that of a Banach space. This article aims to address this by the introduction of a novel stochastic method, the stochastic steepest descent method (SSD). The SSD will follow the spirit of stochastic gradient descent, which utilizes Riesz representation to identify gradients and derivatives. Our choice for using such a method is that it naturally allows one to adopt a Banach space setting, for which recent applications have exploited the benefit of this, such as in PDE-constrained shape optimization. We provide a convergence theory related to this under mild assumptions. Furthermore, we demonstrate the performance of this method on a couple of numerical applications, namely a $p$-Laplacian and an optimal control problem. Our assumptions are verified in these applications.

Summary

We haven't generated a summary for this paper yet.