2000 character limit reached
Explicit construction of Atiyah-Singer indices for maximally hypoelliptic operators on contact manifolds (2106.07305v2)
Published 14 Jun 2021 in math.DG, math.FA, and math.KT
Abstract: The Atiyah-Singer index theorem gives a topological formula for the index of an elliptic differential operator. Enlightening from Alain Connes' tangent groupoid proof of the index theorem and van Erp's research for the Heisenberg index theory on contact manifolds, we give an explicit construction of a series of maps, whose induced map in K-theory is the Heisenberg Atiyah-Singer index map on contact manifolds. Our methods derive from Higson's construction for symbol class in K-theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.