A cohomological formula for the Atiyah-Patodi-Singer index on manifolds with boundary (1207.3514v3)
Abstract: We give a cohomological formula for the index of a fully elliptic pseudodifferential operator on a manifold with boundary. As in the classic case of Atiyah-Singer, we use an embedding into an euclidean space to express the index as the integral of a cohomology class depending in this case on a noncommutative symbol, the integral being over a $C\infty$-manifold called the singular normal bundle associated to the embedding. The formula is based on a K-theoretical Atiyah-Patodi-Singer theorem for manifolds with boundary that is drawn from Connes' tangent groupoid approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.