K-homology and Fredholm Operators II: Elliptic Operators (1604.03535v2)
Abstract: This is an expository paper which gives a proof of the Atiyah-Singer index theorem for elliptic operators. Specifcally, we compute the geometric K-cycle that corresponds to the analytic K-cycle determined by the operator. This paper and its companion ("K-homology and index theory II: Dirac Operators") was written to clear up basic points about index theory that are generally accepted as valid, but for which no proof has been published. Some of these points are needed for the solution of the Heisenberg-elliptic index problem in our paper "K-homology and index theory on contact manifolds" Acta. Math. 2014.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.