Papers
Topics
Authors
Recent
Search
2000 character limit reached

K-homology and Fredholm Operators II: Elliptic Operators

Published 12 Apr 2016 in math.DG | (1604.03535v2)

Abstract: This is an expository paper which gives a proof of the Atiyah-Singer index theorem for elliptic operators. Specifcally, we compute the geometric K-cycle that corresponds to the analytic K-cycle determined by the operator. This paper and its companion ("K-homology and index theory II: Dirac Operators") was written to clear up basic points about index theory that are generally accepted as valid, but for which no proof has been published. Some of these points are needed for the solution of the Heisenberg-elliptic index problem in our paper "K-homology and index theory on contact manifolds" Acta. Math. 2014.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.