Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective Batching for Recurrent Neural Network Grammars (2105.14822v1)

Published 31 May 2021 in cs.CL

Abstract: As a LLM that integrates traditional symbolic operations and flexible neural representations, recurrent neural network grammars (RNNGs) have attracted great attention from both scientific and engineering perspectives. However, RNNGs are known to be harder to scale due to the difficulty of batched training. In this paper, we propose effective batching for RNNGs, where every operation is computed in parallel with tensors across multiple sentences. Our PyTorch implementation effectively employs a GPU and achieves x6 speedup compared to the existing C++ DyNet implementation with model-independent auto-batching. Moreover, our batched RNNG also accelerates inference and achieves x20-150 speedup for beam search depending on beam sizes. Finally, we evaluate syntactic generalization performance of the scaled RNNG against the LSTM baseline, based on the large training data of 100M tokens from English Wikipedia and the broad-coverage targeted syntactic evaluation benchmark. Our RNNG implementation is available at https://github.com/aistairc/rnng-pytorch/.

Citations (16)

Summary

We haven't generated a summary for this paper yet.