Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Parse and Translate Improves Neural Machine Translation (1702.03525v2)

Published 12 Feb 2017 in cs.CL

Abstract: There has been relatively little attention to incorporating linguistic prior to neural machine translation. Much of the previous work was further constrained to considering linguistic prior on the source side. In this paper, we propose a hybrid model, called NMT+RNNG, that learns to parse and translate by combining the recurrent neural network grammar into the attention-based neural machine translation. Our approach encourages the neural machine translation model to incorporate linguistic prior during training, and lets it translate on its own afterward. Extensive experiments with four language pairs show the effectiveness of the proposed NMT+RNNG.

Citations (149)

Summary

We haven't generated a summary for this paper yet.