Papers
Topics
Authors
Recent
Search
2000 character limit reached

AraStance: A Multi-Country and Multi-Domain Dataset of Arabic Stance Detection for Fact Checking

Published 28 Apr 2021 in cs.CL | (2104.13559v2)

Abstract: With the continuing spread of misinformation and disinformation online, it is of increasing importance to develop combating mechanisms at scale in the form of automated systems that support multiple languages. One task of interest is claim veracity prediction, which can be addressed using stance detection with respect to relevant documents retrieved online. To this end, we present our new Arabic Stance Detection dataset (AraStance) of 4,063 claim--article pairs from a diverse set of sources comprising three fact-checking websites and one news website. AraStance covers false and true claims from multiple domains (e.g., politics, sports, health) and several Arab countries, and it is well-balanced between related and unrelated documents with respect to the claims. We benchmark AraStance, along with two other stance detection datasets, using a number of BERT-based models. Our best model achieves an accuracy of 85\% and a macro F1 score of 78\%, which leaves room for improvement and reflects the challenging nature of AraStance and the task of stance detection in general.

Citations (25)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.