Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adversarial Domain Adaptation for Stance Detection (1902.02401v1)

Published 6 Feb 2019 in cs.LG and stat.ML

Abstract: This paper studies the problem of stance detection which aims to predict the perspective (or stance) of a given document with respect to a given claim. Stance detection is a major component of automated fact checking. As annotating stances in different domains is a tedious and costly task, automatic methods based on machine learning are viable alternatives. In this paper, we focus on adversarial domain adaptation for stance detection where we assume there exists sufficient labeled data in the source domain and limited labeled data in the target domain. Extensive experiments on publicly available datasets show the effectiveness of our domain adaption model in transferring knowledge for accurate stance detection across domains.

Citations (33)

Summary

We haven't generated a summary for this paper yet.