Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform bounds for $\rm GL(3) \times GL(2)$ $L$-functions (2104.13025v2)

Published 27 Apr 2021 in math.NT

Abstract: In this paper, we prove uniform bounds for $\rm GL (3)\times GL(2)$ $L$-functions in the $\rm GL(2)$ spectral aspect and the $t$ aspect by a delta method. More precisely, let $\phi$ be a Hecke--Maass cusp form for $\rm SL(3,\mathbb{Z})$ and $f$ a Hecke--Maass cusp form for $\rm SL(2,\mathbb{Z})$ with the spectral parameter $t_f$. Then for $t\in\mathbb{R}$ and any $\varepsilon>0$, we have [ L(1/2+it,\phi\times f) \ll_{\phi,\varepsilon} (t_f+|t|){27/20+\varepsilon}. ] Moreover, we get subconvexity bounds for $L(1/2+it,\phi\times f)$ whenever $|t|-t_f \gg (|t|+t_f){3/5+\varepsilon}$.

Summary

We haven't generated a summary for this paper yet.