2000 character limit reached
Hybrid subconvexity bounds for twisted $L$-functions on $GL(3)$ (1605.09487v2)
Published 31 May 2016 in math.NT
Abstract: Let $q$ be a large prime, and $\chi$ the quadratic character modulo $q$. Let $\phi$ be a self-dual Hecke--Maass cusp form for $SL(3,\mathbb{Z})$, and $u_j$ a Hecke--Maass cusp form for $\Gamma_0(q)\subseteq SL(2,\mathbb{Z})$ with spectral parameter $t_j$. We prove the hybrid subconvexity bounds for the twisted $L$-functions [ L(1/2,\phi\times u_j\times\chi)\ll_{\phi,\varepsilon} (qt_j){3/2-\theta+\varepsilon},\quad L(1/2+it,\phi\times\chi)\ll_{\phi,\varepsilon} (qt){3/4-\theta/2+\varepsilon}, ] for any $\varepsilon>0$, where $\theta=1/23$ is admissible.