Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Rigorous Interpretations: a Formalisation of Feature Attribution (2104.12437v2)

Published 26 Apr 2021 in cs.LG and stat.ML

Abstract: Feature attribution is often loosely presented as the process of selecting a subset of relevant features as a rationale of a prediction. Task-dependent by nature, precise definitions of "relevance" encountered in the literature are however not always consistent. This lack of clarity stems from the fact that we usually do not have access to any notion of ground-truth attribution and from a more general debate on what good interpretations are. In this paper we propose to formalise feature selection/attribution based on the concept of relaxed functional dependence. In particular, we extend our notions to the instance-wise setting and derive necessary properties for candidate selection solutions, while leaving room for task-dependence. By computing ground-truth attributions on synthetic datasets, we evaluate many state-of-the-art attribution methods and show that, even when optimised, some fail to verify the proposed properties and provide wrong solutions.

Citations (15)

Summary

We haven't generated a summary for this paper yet.