Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General Taylor Framework for Unifying and Revisiting Attribution Methods (2105.13841v2)

Published 28 May 2021 in cs.LG, cs.AI, and stat.ML

Abstract: Attribution methods provide an insight into the decision-making process of machine learning models, especially deep neural networks, by assigning contribution scores to each individual feature. However, the attribution problem has not been well-defined, which lacks a unified guideline to the contribution assignment process. Furthermore, existing attribution methods often built upon various empirical intuitions and heuristics. There still lacks a general theoretical framework that not only can offer a good description of the attribution problem, but also can be applied to unifying and revisiting existing attribution methods. To bridge the gap, in this paper, we propose a Taylor attribution framework, which models the attribution problem as how to decide individual payoffs in a coalition. Then, we reformulate fourteen mainstream attribution methods into the Taylor framework and analyze these attribution methods in terms of rationale, fidelity, and limitation in the framework. Moreover, we establish three principles for a good attribution in the Taylor attribution framework, i.e., low approximation error, correct Taylor contribution assignment, and unbiased baseline selection. Finally, we empirically validate the Taylor reformulations and reveal a positive correlation between the attribution performance and the number of principles followed by the attribution method via benchmarking on real-world datasets.

Citations (2)

Summary

We haven't generated a summary for this paper yet.