Papers
Topics
Authors
Recent
2000 character limit reached

Canonical and Surface Morphological Segmentation for Nguni Languages

Published 1 Apr 2021 in cs.CL | (2104.00767v1)

Abstract: Morphological Segmentation involves decomposing words into morphemes, the smallest meaning-bearing units of language. This is an important NLP task for morphologically-rich agglutinative languages such as the Southern African Nguni language group. In this paper, we investigate supervised and unsupervised models for two variants of morphological segmentation: canonical and surface segmentation. We train sequence-to-sequence models for canonical segmentation, where the underlying morphemes may not be equal to the surface form of the word, and Conditional Random Fields (CRF) for surface segmentation. Transformers outperform LSTMs with attention on canonical segmentation, obtaining an average F1 score of 72.5% across 4 languages. Feature-based CRFs outperform bidirectional LSTM-CRFs to obtain an average of 97.1% F1 on surface segmentation. In the unsupervised setting, an entropy-based approach using a character-level LSTM LLM fails to outperforms a Morfessor baseline, while on some of the languages neither approach performs much better than a random baseline. We hope that the high performance of the supervised segmentation models will help to facilitate the development of better NLP tools for Nguni languages.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.