Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tackling the Low-resource Challenge for Canonical Segmentation (2010.02804v1)

Published 6 Oct 2020 in cs.CL, cs.AI, and stat.ML

Abstract: Canonical morphological segmentation consists of dividing words into their standardized morphemes. Here, we are interested in approaches for the task when training data is limited. We compare model performance in a simulated low-resource setting for the high-resource languages German, English, and Indonesian to experiments on new datasets for the truly low-resource languages Popoluca and Tepehua. We explore two new models for the task, borrowing from the closely related area of morphological generation: an LSTM pointer-generator and a sequence-to-sequence model with hard monotonic attention trained with imitation learning. We find that, in the low-resource setting, the novel approaches outperform existing ones on all languages by up to 11.4% accuracy. However, while accuracy in emulated low-resource scenarios is over 50% for all languages, for the truly low-resource languages Popoluca and Tepehua, our best model only obtains 37.4% and 28.4% accuracy, respectively. Thus, we conclude that canonical segmentation is still a challenging task for low-resource languages.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Manuel Mager (15 papers)
  2. Özlem Çetinoğlu (7 papers)
  3. Katharina Kann (50 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.