Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generic Perceptual Loss for Modeling Structured Output Dependencies (2103.10571v1)

Published 18 Mar 2021 in cs.CV

Abstract: The perceptual loss has been widely used as an effective loss term in image synthesis tasks including image super-resolution, and style transfer. It was believed that the success lies in the high-level perceptual feature representations extracted from CNNs pretrained with a large set of images. Here we reveal that, what matters is the network structure instead of the trained weights. Without any learning, the structure of a deep network is sufficient to capture the dependencies between multiple levels of variable statistics using multiple layers of CNNs. This insight removes the requirements of pre-training and a particular network structure (commonly, VGG) that are previously assumed for the perceptual loss, thus enabling a significantly wider range of applications. To this end, we demonstrate that a randomly-weighted deep CNN can be used to model the structured dependencies of outputs. On a few dense per-pixel prediction tasks such as semantic segmentation, depth estimation and instance segmentation, we show improved results of using the extended randomized perceptual loss, compared to the baselines using pixel-wise loss alone. We hope that this simple, extended perceptual loss may serve as a generic structured-output loss that is applicable to most structured output learning tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yifan Liu (135 papers)
  2. Hao Chen (1006 papers)
  3. Yu Chen (506 papers)
  4. Wei Yin (57 papers)
  5. Chunhua Shen (404 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.