Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Systematic Performance Analysis of Deep Perceptual Loss Networks: Breaking Transfer Learning Conventions (2302.04032v3)

Published 8 Feb 2023 in cs.CV and cs.LG

Abstract: In recent years, deep perceptual loss has been widely and successfully used to train machine learning models for many computer vision tasks, including image synthesis, segmentation, and autoencoding. Deep perceptual loss is a type of loss function for images that computes the error between two images as the distance between deep features extracted from a neural network. Most applications of the loss use pretrained networks called loss networks for deep feature extraction. However, despite increasingly widespread use, the effects of loss network implementation on the trained models have not been studied. This work rectifies this through a systematic evaluation of the effect of different pretrained loss networks on four different application areas. Specifically, the work evaluates 14 different pretrained architectures with four different feature extraction layers. The evaluation reveals that VGG networks without batch normalization have the best performance and that the choice of feature extraction layer is at least as important as the choice of architecture. The analysis also reveals that deep perceptual loss does not adhere to the transfer learning conventions that better ImageNet accuracy implies better downstream performance and that feature extraction from the later layers provides better performance.

Citations (6)

Summary

We haven't generated a summary for this paper yet.