Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Independence of $\ell$ for Frobenius conjugacy classes attached to abelian varieties (2103.09945v2)

Published 17 Mar 2021 in math.NT

Abstract: Let $A$ be an abelian variety over a number field $\mathrm E\subset \mathbb C$ and let $\mathbf G$ denote the Mumford--Tate group of $A$. After replacing $\mathrm E$ by a finite extension, the action of the absolute Galois group $\mathrm{Gal}(\overline{\mathrm E}/\mathrm E)$ on the $\ell$-adic cohomology $\mathrm{H}1_{\mathrm{\acute{e}t}}(A_{\overline{\mathrm E}},\mathbb Q_\ell)$ factors through $\mathbf G(\mathbb Q_\ell).$ We show that for $v$ an odd prime of $\mathrm E$ where $A$ has good reduction, the conjugacy class of Frobenius $\mathrm{Frob}v$ in $\mathbf G(\mathbb Q\ell)$ is independent of $\ell$. Along the way we prove that every point in the $\mu$-ordinary locus of the special fiber of Shimura varieties has a special point lifting it.

Summary

We haven't generated a summary for this paper yet.