Papers
Topics
Authors
Recent
2000 character limit reached

Independence of l-adic representations of geometric Galois groups

Published 26 Feb 2013 in math.NT | (1302.6597v2)

Abstract: Let k be an algebraically closed field of arbitrary characteristic,let K/k be a finitely generated field extension and let X be a separated scheme of finite type over K. For each prime ell, the absolute Galois group of K acts on the ell-adic etale cohomology modules of X. We prove that this family of representations varying over ell is almost independent in the sense of Serre, i.e., that the fixed fields inside an algebraic closure of K of the kernels of the representations for all ell become linearly disjoint over a finite extension of K. In doing this, we also prove a number of interesting facts on the images and ramification of this family of representations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.