Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Recent Advances on Neural Network Pruning at Initialization (2103.06460v3)

Published 11 Mar 2021 in cs.LG, cs.AI, cs.CV, and cs.NE

Abstract: Neural network pruning typically removes connections or neurons from a pretrained converged model; while a new pruning paradigm, pruning at initialization (PaI), attempts to prune a randomly initialized network. This paper offers the first survey concentrated on this emerging pruning fashion. We first introduce a generic formulation of neural network pruning, followed by the major classic pruning topics. Then, as the main body of this paper, a thorough and structured literature review of PaI methods is presented, consisting of two major tracks (sparse training and sparse selection). Finally, we summarize the surge of PaI compared to PaT and discuss the open problems. Apart from the dedicated literature review, this paper also offers a code base for easy sanity-checking and benchmarking of different PaI methods.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.