Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Better SGD using Second-order Momentum (2103.03265v2)

Published 4 Mar 2021 in cs.LG and stat.ML

Abstract: We develop a new algorithm for non-convex stochastic optimization that finds an $\epsilon$-critical point in the optimal $O(\epsilon{-3})$ stochastic gradient and Hessian-vector product computations. Our algorithm uses Hessian-vector products to "correct" a bias term in the momentum of SGD with momentum. This leads to better gradient estimates in a manner analogous to variance reduction methods. In contrast to prior work, we do not require excessively large batch sizes, and are able to provide an adaptive algorithm whose convergence rate automatically improves with decreasing variance in the gradient estimates. We validate our results on a variety of large-scale deep learning architectures and benchmarks tasks.

Citations (11)

Summary

We haven't generated a summary for this paper yet.