Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Momentum Improves Normalized SGD (2002.03305v2)

Published 9 Feb 2020 in cs.LG, math.OC, and stat.ML

Abstract: We provide an improved analysis of normalized SGD showing that adding momentum provably removes the need for large batch sizes on non-convex objectives. Then, we consider the case of objectives with bounded second derivative and show that in this case a small tweak to the momentum formula allows normalized SGD with momentum to find an $\epsilon$-critical point in $O(1/\epsilon{3.5})$ iterations, matching the best-known rates without accruing any logarithmic factors or dependence on dimension. We also provide an adaptive method that automatically improves convergence rates when the variance in the gradients is small. Finally, we show that our method is effective when employed on popular large scale tasks such as ResNet-50 and BERT pretraining, matching the performance of the disparate methods used to get state-of-the-art results on both tasks.

Citations (108)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets