Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Centroid Transformers: Learning to Abstract with Attention (2102.08606v2)

Published 17 Feb 2021 in cs.LG and stat.ML

Abstract: Self-attention, as the key block of transformers, is a powerful mechanism for extracting features from the inputs. In essence, what self-attention does is to infer the pairwise relations between the elements of the inputs, and modify the inputs by propagating information between input pairs. As a result, it maps inputs to N outputs and casts a quadratic $O(N2)$ memory and time complexity. We propose centroid attention, a generalization of self-attention that maps N inputs to M outputs $(M\leq N)$, such that the key information in the inputs are summarized in the smaller number of outputs (called centroids). We design centroid attention by amortizing the gradient descent update rule of a clustering objective function on the inputs, which reveals an underlying connection between attention and clustering. By compressing the inputs to the centroids, we extract the key information useful for prediction and also reduce the computation of the attention module and the subsequent layers. We apply our method to various applications, including abstractive text summarization, 3D vision, and image processing. Empirical results demonstrate the effectiveness of our method over the standard transformers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Lemeng Wu (29 papers)
  2. Xingchao Liu (28 papers)
  3. Qiang Liu (405 papers)
Citations (25)