Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Technical Challenges for Training Fair Neural Networks (2102.06764v1)

Published 12 Feb 2021 in cs.LG, cs.AI, and cs.CY

Abstract: As machine learning algorithms have been widely deployed across applications, many concerns have been raised over the fairness of their predictions, especially in high stakes settings (such as facial recognition and medical imaging). To respond to these concerns, the community has proposed and formalized various notions of fairness as well as methods for rectifying unfair behavior. While fairness constraints have been studied extensively for classical models, the effectiveness of methods for imposing fairness on deep neural networks is unclear. In this paper, we observe that these large models overfit to fairness objectives, and produce a range of unintended and undesirable consequences. We conduct our experiments on both facial recognition and automated medical diagnosis datasets using state-of-the-art architectures.

Citations (22)

Summary

We haven't generated a summary for this paper yet.