Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Last-Layer Fairness Fine-tuning is Simple and Effective for Neural Networks (2304.03935v2)

Published 8 Apr 2023 in cs.LG

Abstract: As machine learning has been deployed ubiquitously across applications in modern data science, algorithmic fairness has become a great concern. Among them, imposing fairness constraints during learning, i.e. in-processing fair training, has been a popular type of training method because they don't require accessing sensitive attributes during test time in contrast to post-processing methods. While this has been extensively studied in classical machine learning models, their impact on deep neural networks remains unclear. Recent research has shown that adding fairness constraints to the objective function leads to severe over-fitting to fairness criteria in large models, and how to solve this challenge is an important open question. To tackle this, we leverage the wisdom and power of pre-training and fine-tuning and develop a simple but novel framework to train fair neural networks in an efficient and inexpensive way -- last-layer fine-tuning alone can effectively promote fairness in deep neural networks. This framework offers valuable insights into representation learning for training fair neural networks.

Citations (16)

Summary

We haven't generated a summary for this paper yet.