On regularization methods based on dynamic programming techniques
Abstract: In this article we investigate the connection between regularization theory for inverse problems and dynamic programming theory. This is done by developing two new regularization methods, based on dynamic programming techniques. The aim of these methods is to obtain stable approximations to the solution of linear inverse ill-posed problems. We follow two different approaches and derive a continuous and a discrete regularization method. Regularization properties for both methods are proved as well as rates of convergence. A numerical benchmark problem concerning integral operators with convolution kernels is used to illustrate the theoretical results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.