Regularization by dynamic programming
Abstract: We investigate continuous regularization methods for linear inverse problems of static and dynamic type. These methods are based on dynamic programming approaches for linear quadratic optimal control problems. We prove regularization properties and also obtain rates of convergence for our methods. A numerical example concerning a dynamical electrical impedance tomography (EIT) problem is used to illustrate the theoretical results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.