Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems (2002.04474v2)

Published 11 Feb 2020 in math.NA, cs.NA, and math.OC

Abstract: Many inverse problems are concerned with the estimation of non-negative parameter functions. In this paper, in order to obtain non-negative stable approximate solutions to ill-posed linear operator equations in a Hilbert space setting, we develop two novel non-negativity preserving iterative regularization methods. They are based on fixed point iterations in combination with preconditioning ideas. In contrast to the projected Landweber iteration, for which only weak convergence can be shown for the regularized solution when the noise level tends to zero, the introduced regularization methods exhibit strong convergence. There are presented convergence results, even for a combination of noisy right-hand side and imperfect forward operators, and for one of the approaches there are also convergence rates results. Specifically adapted discrepancy principles are used as a posteriori stopping rules of the established iterative regularization algorithms. For an application of the suggested new approaches, we consider a biosensor problem, which is modelled as a two dimensional linear Fredholm integral equation of the first kind. Several numerical examples, as well as a comparison with the projected Landweber method, are presented to show the accuracy and the acceleration effect of the novel methods. Case studies of a real data problem indicate that the developed methods can produce meaningful featured regularized solutions.

Citations (14)

Summary

We haven't generated a summary for this paper yet.