Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolutionary Multi-Objective Optimization Algorithm Framework with Three Solution Sets (2012.07319v1)

Published 14 Dec 2020 in cs.NE

Abstract: It is assumed in the evolutionary multi-objective optimization (EMO) community that a final solution is selected by a decision maker from a non-dominated solution set obtained by an EMO algorithm. The number of solutions to be presented to the decision maker can be totally different. In some cases, the decision maker may want to examine only a few representative solutions from which a final solution is selected. In other cases, a large number of non-dominated solutions may be needed to visualize the Pareto front. In this paper, we suggest the use of a general EMO framework with three solution sets to handle various situations with respect to the required number of solutions. The three solution sets are the main population of an EMO algorithm, an external archive to store promising solutions, and a final solution set which is presented to the decision maker. The final solution set is selected from the archive. Thus the population size and the archive size can be arbitrarily specified as long as the archive size is not smaller than the required number of solutions. The final population is not necessarily to be a good solution set since it is not presented to the decision maker. Through computational experiments, we show the advantages of this framework over the standard final population and final archive frameworks. We also discuss how to select a final solution set and how to explain the reason for the selection, which is the first attempt towards an explainable EMO framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hisao Ishibuchi (45 papers)
  2. Lie Meng Pang (8 papers)
  3. Ke Shang (18 papers)