Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

User preference extraction using dynamic query sliders in conjunction with UPS-EMO algorithm (1110.5992v1)

Published 27 Oct 2011 in cs.NE and cs.NA

Abstract: One drawback of evolutionary multiobjective optimization algorithms (EMOA) has traditionally been high computational cost to create an approximation of the Pareto front: number of required objective function evaluations usually grows high. On the other hand, for the decision maker (DM) it may be difficult to select one of the many produced solutions as the final one, especially in the case of more than two objectives. To overcome the above mentioned drawbacks number of EMOA's incorporating the decision makers preference information have been proposed. In this case, it is possible to save objective function evaluations by generating only the part of the front the DM is interested in, thus also narrowing down the pool of possible selections for the final solution. Unfortunately, most of the current EMO approaches utilizing preferences are not very intuitive to use, i.e. they may require tweaking of unintuitive parameters, and it is not always clear what kind of results one can get with given set of parameters. In this study we propose a new approach to visually inspect produced solutions, and to extract preference information from the DM to further guide the search. Our approach is based on intuitive use of dynamic query sliders, which serve as a means to extract preference information and are part of the graphical user interface implemented for the efficient UPS-EMO algorithm.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Timo Aittokoski (1 paper)
  2. Suvi Tarkkanen (1 paper)
Citations (4)

Summary

We haven't generated a summary for this paper yet.