Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Local laws for multiplication of random matrices (2010.16083v2)

Published 30 Oct 2020 in math.PR

Abstract: Consider the random matrix model $A{1/2} UBU* A{1/2},$ where $A$ and $B$ are two $N \times N$ deterministic matrices and $U$ is either an $N \times N$ Haar unitary or orthogonal random matrix. It is well-known that on the macroscopic scale, the limiting empirical spectral distribution (ESD) of the above model is given by the free multiplicative convolution of the limiting ESDs of $A$ and $B,$ denoted as $\mu_\alpha \boxtimes \mu_\beta,$ where $\mu_\alpha$ and $\mu_\beta$ are the limiting ESDs of $A$ and $B,$ respectively. In this paper, we study the asymptotic microscopic behavior of the edge eigenvalues and eigenvectors statistics. We prove that both the density of $\mu_A \boxtimes \mu_B,$ where $\mu_A$ and $\mu_B$ are the ESDs of $A$ and $B,$ respectively and the associated subordination functions have a regular behavior near the edges. Moreover, we establish the local laws near the edges on the optimal scale. In particular, we prove that the entries of the resolvent are close to some functionals depending only on the eigenvalues of $A, B$ and the subordination functions with optimal convergence rates. Our proofs and calculations are based on the techniques developed for the additive model $A+UBU*$ in [3,5,6,8], and our results can be regarded as the counterparts of [8] for the multiplicative model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.