Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Convergence Rate for Spectral Distribution of Addition of Random Matrices (1606.03076v1)

Published 9 Jun 2016 in math.PR, math-ph, and math.MP

Abstract: Let $A$ and $B$ be two $N$ by $N$ deterministic Hermitian matrices and let $U$ be an $N$ by $N$ Haar distributed unitary matrix. It is well known that the spectral distribution of the sum $H=A+UBU*$ converges weakly to the free additive convolution of the spectral distributions of $A$ and $B$, as $N$ tends to infinity. We establish the optimal convergence rate ${\frac{1}{N}}$ in the bulk of the spectrum.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.