Papers
Topics
Authors
Recent
Search
2000 character limit reached

Local Minima Structures in Gaussian Mixture Models

Published 28 Sep 2020 in stat.ML, cs.LG, math.ST, and stat.TH | (2009.13040v3)

Abstract: We investigate the landscape of the negative log-likelihood function of Gaussian Mixture Models (GMMs) with a general number of components in the population limit. As the objective function is non-convex, there can be multiple local minima that are not globally optimal, even for well-separated mixture models. Our study reveals that all local minima share a common structure that partially identifies the cluster centers (i.e., means of the Gaussian components) of the true location mixture. Specifically, each local minimum can be represented as a non-overlapping combination of two types of sub-configurations: fitting a single mean estimate to multiple Gaussian components or fitting multiple estimates to a single true component. These results apply to settings where the true mixture components satisfy a certain separation condition, and are valid even when the number of components is over- or under-specified. We also present a more fine-grained analysis for the setting of one-dimensional GMMs with three components, which provide sharper approximation error bounds with improved dependence on the separation.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.