Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Singularity, Misspecification, and the Convergence Rate of EM (1810.00828v2)

Published 1 Oct 2018 in math.ST, stat.ML, and stat.TH

Abstract: A line of recent work has analyzed the behavior of the Expectation-Maximization (EM) algorithm in the well-specified setting, in which the population likelihood is locally strongly concave around its maximizing argument. Examples include suitably separated Gaussian mixture models and mixtures of linear regressions. We consider over-specified settings in which the number of fitted components is larger than the number of components in the true distribution. Such misspecified settings can lead to singularity in the Fisher information matrix, and moreover, the maximum likelihood estimator based on $n$ i.i.d. samples in $d$ dimensions can have a non-standard $\mathcal{O}((d/n){\frac{1}{4}})$ rate of convergence. Focusing on the simple setting of two-component mixtures fit to a $d$-dimensional Gaussian distribution, we study the behavior of the EM algorithm both when the mixture weights are different (unbalanced case), and are equal (balanced case). Our analysis reveals a sharp distinction between these two cases: in the former, the EM algorithm converges geometrically to a point at Euclidean distance of $\mathcal{O}((d/n){\frac{1}{2}})$ from the true parameter, whereas in the latter case, the convergence rate is exponentially slower, and the fixed point has a much lower $\mathcal{O}((d/n){\frac{1}{4}})$ accuracy. Analysis of this singular case requires the introduction of some novel techniques: in particular, we make use of a careful form of localization in the associated empirical process, and develop a recursive argument to progressively sharpen the statistical rate.

Citations (56)

Summary

We haven't generated a summary for this paper yet.