Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotic Performance Prediction for ADMM-Based Compressed Sensing (2009.08545v2)

Published 17 Sep 2020 in eess.SP, cs.IT, and math.IT

Abstract: In this paper, we propose a method to predict the asymptotic performance of the alternating direction method of multipliers (ADMM) for compressed sensing, where we reconstruct an unknown structured signal from its underdetermined linear measurements. The derivation of the proposed method is based on the recently developed convex Gaussian min-max theorem (CGMT), which can be applied to various convex optimization problems to obtain its asymptotic error performance. Our main idea is to analyze the convex subproblem in the update of ADMM iteratively and characterize the asymptotic distribution of the tentative estimate obtained at each iteration. However, since the original CGMT cannot be used directly for the analysis of the iterative updates, we intuitively assume an extended version of CGMT in the derivation of the proposed method. Under the assumption, the result shows that the update equations in ADMM can be decoupled into a scalar-valued stochastic process in the asymptotic regime with the large system limit. From the asymptotic result, we can predict the evolution of the error (e.g., mean-square-error (MSE) and symbol error rate (SER)) in ADMM for large-scale compressed sensing problems. Simulation results show that the empirical performance of ADMM and its prediction are close to each other in sparse vector reconstruction and binary vector reconstruction.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.