Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Stochastic Alternating Direction Method of Multipliers (1502.03529v3)

Published 12 Feb 2015 in cs.LG

Abstract: Stochastic alternating direction method of multipliers (ADMM), which visits only one sample or a mini-batch of samples each time, has recently been proved to achieve better performance than batch ADMM. However, most stochastic methods can only achieve a convergence rate $O(1/\sqrt T)$ on general convex problems,where T is the number of iterations. Hence, these methods are not scalable with respect to convergence rate (computation cost). There exists only one stochastic method, called SA-ADMM, which can achieve convergence rate $O(1/T)$ on general convex problems. However, an extra memory is needed for SA-ADMM to store the historic gradients on all samples, and thus it is not scalable with respect to storage cost. In this paper, we propose a novel method, called scalable stochastic ADMM(SCAS-ADMM), for large-scale optimization and learning problems. Without the need to store the historic gradients, SCAS-ADMM can achieve the same convergence rate $O(1/T)$ as the best stochastic method SA-ADMM and batch ADMM on general convex problems. Experiments on graph-guided fused lasso show that SCAS-ADMM can achieve state-of-the-art performance in real applications

Citations (20)

Summary

We haven't generated a summary for this paper yet.