Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noisy Concurrent Training for Efficient Learning under Label Noise (2009.08325v1)

Published 17 Sep 2020 in cs.CV and cs.LG

Abstract: Deep neural networks (DNNs) fail to learn effectively under label noise and have been shown to memorize random labels which affect their generalization performance. We consider learning in isolation, using one-hot encoded labels as the sole source of supervision, and a lack of regularization to discourage memorization as the major shortcomings of the standard training procedure. Thus, we propose Noisy Concurrent Training (NCT) which leverages collaborative learning to use the consensus between two models as an additional source of supervision. Furthermore, inspired by trial-to-trial variability in the brain, we propose a counter-intuitive regularization technique, target variability, which entails randomly changing the labels of a percentage of training samples in each batch as a deterrent to memorization and over-generalization in DNNs. Target variability is applied independently to each model to keep them diverged and avoid the confirmation bias. As DNNs tend to prioritize learning simple patterns first before memorizing the noisy labels, we employ a dynamic learning scheme whereby as the training progresses, the two models increasingly rely more on their consensus. NCT also progressively increases the target variability to avoid memorization in later stages. We demonstrate the effectiveness of our approach on both synthetic and real-world noisy benchmark datasets.

Citations (20)

Summary

We haven't generated a summary for this paper yet.