Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Label Correction via Entropy Thresholding (2103.17008v2)

Published 31 Mar 2021 in cs.LG

Abstract: Deep neural networks (DNNs) have the capacity to fit extremely noisy labels nonetheless they tend to learn data with clean labels first and then memorize those with noisy labels. We examine this behavior in light of the Shannon entropy of the predictions and demonstrate the low entropy predictions determined by a given threshold are much more reliable as the supervision than the original noisy labels. It also shows the advantage in maintaining more training samples than previous methods. Then, we power this entropy criterion with the Collaborative Label Correction (CLC) framework to further avoid undesired local minimums of the single network. A range of experiments have been conducted on multiple benchmarks with both synthetic and real-world settings. Extensive results indicate that our CLC outperforms several state-of-the-art methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.