Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Architecture Search For Keyword Spotting (2009.00165v2)

Published 1 Sep 2020 in eess.AS, cs.LG, and cs.SD

Abstract: Deep neural networks have recently become a popular solution to keyword spotting systems, which enable the control of smart devices via voice. In this paper, we apply neural architecture search to search for convolutional neural network models that can help boost the performance of keyword spotting based on features extracted from acoustic signals while maintaining an acceptable memory footprint. Specifically, we use differentiable architecture search techniques to search for operators and their connections in a predefined cell search space. The found cells are then scaled up in both depth and width to achieve competitive performance. We evaluated the proposed method on Google's Speech Commands Dataset and achieved a state-of-the-art accuracy of over 97% on the setting of 12-class utterance classification commonly reported in the literature.

Citations (28)

Summary

We haven't generated a summary for this paper yet.