Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Encoder-Decoder Neural Architecture Optimization for Keyword Spotting (2106.02738v1)

Published 4 Jun 2021 in cs.LG and cs.MM

Abstract: Keyword spotting aims to identify specific keyword audio utterances. In recent years, deep convolutional neural networks have been widely utilized in keyword spotting systems. However, their model architectures are mainly based on off-the shelfbackbones such as VGG-Net or ResNet, instead of specially designed for the task. In this paper, we utilize neural architecture search to design convolutional neural network models that can boost the performance of keyword spotting while maintaining an acceptable memory footprint. Specifically, we search the model operators and their connections in a specific search space with Encoder-Decoder neural architecture optimization. Extensive evaluations on Google's Speech Commands Dataset show that the model architecture searched by our approach achieves a state-of-the-art accuracy of over 97%.

Citations (4)

Summary

We haven't generated a summary for this paper yet.