Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online inverse reinforcement learning with limited data (2008.08972v1)

Published 18 Aug 2020 in eess.SY and cs.SY

Abstract: This paper addresses the problem of online inverse reinforcement learning for systems with limited data and uncertain dynamics. In the developed approach, the state and control trajectories are recorded online by observing an agent perform a task, and reward function estimation is performed in real-time using a novel inverse reinforcement learning approach. Parameter estimation is performed concurrently to help compensate for uncertainties in the agent's dynamics. Data insufficiency is resolved by developing a data-driven update law to estimate the optimal feedback controller. The estimated controller can then be queried to artificially create additional data to drive reward function estimation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.