Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logarithmic Regret Bound in Partially Observable Linear Dynamical Systems (2003.11227v2)

Published 25 Mar 2020 in cs.LG, math.OC, and stat.ML

Abstract: We study the problem of system identification and adaptive control in partially observable linear dynamical systems. Adaptive and closed-loop system identification is a challenging problem due to correlations introduced in data collection. In this paper, we present the first model estimation method with finite-time guarantees in both open and closed-loop system identification. Deploying this estimation method, we propose adaptive control online learning (AdaptOn), an efficient reinforcement learning algorithm that adaptively learns the system dynamics and continuously updates its controller through online learning steps. AdaptOn estimates the model dynamics by occasionally solving a linear regression problem through interactions with the environment. Using policy re-parameterization and the estimated model, AdaptOn constructs counterfactual loss functions to be used for updating the controller through online gradient descent. Over time, AdaptOn improves its model estimates and obtains more accurate gradient updates to improve the controller. We show that AdaptOn achieves a regret upper bound of $\text{polylog}\left(T\right)$, after $T$ time steps of agent-environment interaction. To the best of our knowledge, AdaptOn is the first algorithm that achieves $\text{polylog}\left(T\right)$ regret in adaptive control of unknown partially observable linear dynamical systems which includes linear quadratic Gaussian (LQG) control.

Citations (89)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com