Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Maximal Orders in the Sklyanin Algebra (2008.06947v1)

Published 16 Aug 2020 in math.RA

Abstract: A major current goal of noncommutative geometry is the classification of noncommutative projective surfaces. The generic case is to understand algebras birational to the Sklyanin algebra. In this work we complete a considerable component of this problem. Let S denote the 3-dimensional Sklyanin algebra over an algebraically closed field, and assume that S is not a finite module over its centre. In earlier work Rogalski, Sierra and Stafford classified the maximal orders inside the 3-Veronese of S. We complete and extend their work and classify all maximal orders inside S. As in Rogalski, Sierra and Stafford's work, these can be viewed as blowups at (possibly non-effective) divisors. A consequence of this classification is that maximal orders are automatically noetherian among other desirable properties.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.