Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Classifying Orders in the Sklyanin Algebra (1308.2213v1)

Published 9 Aug 2013 in math.RA

Abstract: One of the major open problems in noncommutative algebraic geometry is the classification of noncommutative surfaces, and this paper resolves a significant case of this problem. Specifically, let S denote the 3-dimensional Sklyanin algebra over an algebraically closed field k and assume that S is not a finite module over its centre. (This algebra corresponds to a generic noncommutative P2.) Let A be any connected graded k-algebra that is contained in and has the same quotient ring as a Veronese ring S3n. Then we give a reasonably complete description of the structure of A. This is most satisfactory when A is a maximal order, in which case we prove, subject to a minor technical condition, that A is a noncommutative blowup of S3n at a (possibly non-effective) divisor on the associated elliptic curve E. It follows that A has surprisingly pleasant properties; for example it is automatically noetherian, indeed strongly noetherian, and has a dualizing complex.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.