Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Noncommutative Blowups of Elliptic Algebras (1308.2216v2)

Published 9 Aug 2013 in math.RA

Abstract: We develop a ring-theoretic approach for blowing up many noncommutative projective surfaces. Let T be an elliptic algebra (meaning that, for some central element g of degree 1, T/gT is a twisted homogeneous coordinate ring of an elliptic curve E at an infinite order automorphism). Given an effective divisor d on E whose degree is not too big, we construct a blowup T(d) of T at d and show that it is also an elliptic algebra. Consequently it has many good properties: for example, it is strongly noetherian, Auslander-Gorenstein, and has a balanced dualizing complex. We also show that the ideal structure of T(d) is quite rigid. Our results generalise those of the first author. In the companion paper "Classifying Orders in the Sklyanin Algebra", we apply our results to classify orders in (a Veronese subalgebra of) a generic cubic or quadratic Sklyanin algebra.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.